Optimized Schwarz Methods for Maxwell’s Equations with Non-zero Electric Conductivity

نویسندگان

  • Victorita Dolean
  • Mohamed El Bouajaji
  • Martin J. Gander
  • Stéphane Lanteri
چکیده

The study of optimized Schwarz methods for Maxwell’s equations started with the Helmholtz equation, see [2, 3, 4, 11]. For the rot-rot formulation of Maxwell’s equations, optimized Schwarz methods were developed in [1], and for the more general form in [9, 10]. An entire hierarchy of families of optimized Schwarz methods was analyzed in [8], see also [5] for discontinuous Galerkin discretizations and large scale experiments. We present in this paper a first analysis of optimized Schwarz methods for Maxwell’s equations with non-zero electric conductivity. This is an important case for real applications, and requires a new, and fundamentally different optimization of the transmission conditions. We illustrate our analysis with numerical experiments.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimized Schwarz Methods for the Time-Harmonic Maxwell Equations with Damping

In a previous paper, two of the authors have proposed and analyzed an entire hierarchy of optimized Schwarz methods for Maxwell’s equations in both the time-harmonic and the time-domain case. The optimization process has been performed in a particular situation where the electric conductivity was neglected. Here, we take into account this physical parameter which leads to a fundamentally differ...

متن کامل

Optimized Schwarz Methods for Maxwell equations

Over the last two decades, classical Schwarz methods have been extended to systems of hyperbolic partial differential equations, using characteristic transmission conditions, and it has been observed that the classical Schwarz method can be convergent even without overlap in certain cases. This is in strong contrast to the behavior of classical Schwarz methods applied to elliptic problems, for ...

متن کامل

Optimized Schwarz Methods for Maxwell's Equations

Over the last two decades, classical Schwarz methods have been extended to systems of hyperbolic partial differential equations, using characteristic transmission conditions, and it has been observed that the classical Schwarz method can be convergent even without overlap in certain cases. This is in strong contrast to the behavior of classical Schwarz methods applied to elliptic problems, for ...

متن کامل

Optimized Schwarz Methods for curl-curl time-harmonic Maxwell's equations

Like the Helmholtz equation, the high frequency time-harmonic Maxwell’s equations are difficult to solve by classical iterative methods. Domain decomposition methods are currently most promising: following the first provably convergent method in [4], various optimized Schwarz methods were developed over the last decade [2, 3, 10, 11, 1, 6, 13, 14, 16, 8]. There are however two basic formulation...

متن کامل

DG discretization of optimized Schwarz methods for Maxwell's equations

In the last decades, Discontinuous Galerkin (DG) methods have seen rapid growth and are widely used in various application domains (see [13] for an historical introduction). This is due to their main advantage of combining the best of finite element and finite volume methods. For the time-harmonic Maxwell equations, once the problem is discretized with a DG method, finding robust solvers is a d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009